セパレータの高温時の強度測定およびひずみ特性評価

精密万能試験機 オートグラフ AGX-V

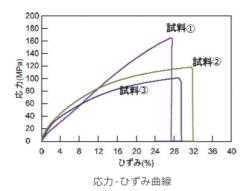
- リチウムイオン電池部材の様々な機械的強度測定
- 高密度でパッキングされたセパレータの突き刺し強度評価
- DIC解析によるひずみ分布の可視化

セパレータは正極と負極に接触する形で設置され、充電の際などに温度上昇を伴うことから、ある程度の温度でも機械的強 度を保っている必要があります。セパレータの引張試験と突き刺し試験における強度が、温度変化に対してどのように変化 するかを測定した事例、また突き刺し損傷後のひずみ特性評価事例を紹介します。

評価目的

セパレータの引張強度試験

試験結果


試料	セパレータ			
即作	①	2	3	
弾性率 (MPa)	902	1856	1376	
引張強度 (MPa)	165	118	101	
破断ひずみ (%)	27.6	31.7	29.1	

評価試料

セパレータ3種

≣_ ‡¥3	セパレータ			
	1	2	3	
厚さ	20μm	20µm	10μm	

測定結果より、引張強度の高いセパレータは①であることがわかります。

製品ページはこちら 精密万能試験機 オートグラフ AGX-V

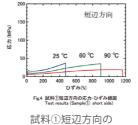
データの詳細はこちら

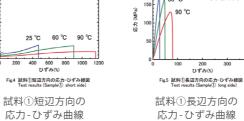
評価目的

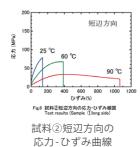
高温時のセパレータの機械的強度測定

(温度環境:25℃、60℃、90℃)

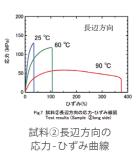
評価試料


セパレータ2種×方向2種


(長辺方向 (MD) と短辺方向 (TD))


試料①および②の短辺方向と長辺方向の機械的特性値

	25 ℃		60 ℃		90 ℃	
試料	引張強度 (MPa)	破断ひずみ (%)	引張強度 (MPa)	破断ひずみ (%)	引張強度 (MPa)	破断ひずみ (%)
①短辺方向	36.9	471.4	35.4	898.8	19.3	1044.0
①長辺方向	175.6	26.8	162.5	57.0	129.9	76.7
②短辺方向	78.2	138.5	68.8	347.6	33.8	427.9
②長辺方向	129.5	34.1	118.3	105.3	58.7	367.2



長辺方向

短辺方向

ダンベル試験片 (イメージ図)

篇 結果

各サンプルにおいて、短辺方向(TD)の方が長辺方向(MD)よりも引張強度は低く、伸びが大きいことがわかります。 また、各温度25℃と60℃でのひずみと引張強度を比べると、60℃における破断ひずみの値は2倍程度大きくなっているに もかかわらず、引張強度の低下はわずかなことがわかります。60℃と90℃での特性値を比較すると、破断ひずみは値が大 きくりますが、引張強は値が著しく低下していることがわかります。このことから、60℃において伸び特性が挙がるにもかか わらず、優れた機械的強度を維持していることがわかります。

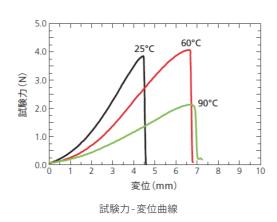
製品ページはこちら 精密万能試験機 オートグラフ AGX-V

データの詳細はこちら

高温時のセパレータの突き刺し強度測定

セパレータ

(温度環境:25℃、60℃、90℃)



√ データ

試験温度に対する最大試験力と最大変位

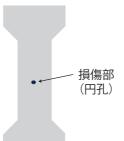
試験温度(℃)	最大試験力(N)	最大変位(mm)
25	3.85	4.45
60	4.07	6.63
90	2.13	6.68

注 結果

25℃と60℃を比較すると、最大試験力は同等ですが、最大変位の値は60℃の方が増大していることがわかります。次に60 ℃と90℃における特性値を比較すると、90℃で最大試験力の低下が見られますが、最大変位については同様の値となって います。

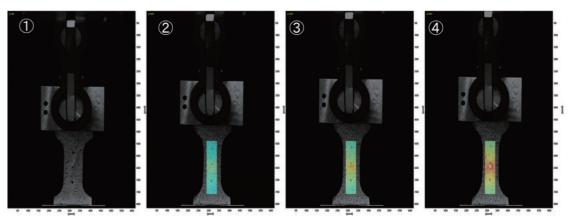
本試験に用いたセパレータは、60℃において伸び特性が上がるとともに、強度は低下しないことがわかります。

製品ページはこちら 精密万能試験機 オートグラフ AGX-V


データの詳細はこちら

♀ 評価目的

評価試料


突き刺し損傷後のセパレータのひずみ特性評価

突き刺し試験後のセパレータ

√ データ

引張負荷時のひずみ分布

セパレータが損傷を受けた場合、突き刺し損傷後のセパレータがどのようなひずみ特性を示すのかを、引張試験で評価しま した。中央の損傷部にひずみが集中していることが視覚的にわかります。

ランダムパターンの好きな点の距離で変位を測定できるので、どのあたりで大きく変位しているかの評価が行えます。

製品ページはこちら 精密万能試験機 オートグラフ AGX-V

データの詳細はこちら