

() SHIMADZU	
目次	
・XPSとは	
• 表面分析手法の中の位置づけ	
・ XPSの基礎	
・X線照射による有機物の表面劣化	
・大気非暴露でのPd触媒分析	
・MEA膜のXPS分析	
・総括	

BSHIMADZU 様 方 ガ ま 面 分 折 毛 た カ ・ ま 市 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	:				
	•				
名称	励起源	観測される 信号	測定元素範囲	深さ分解能	得られる情報
ESCA/XPS (Electron spectroscopy for chemical analysis/ X-ray photoelectron spectroscopy)	X線	光電子	Li - U	1 - 10 nm	元素組成 化学状態
SIMS (Secondary ion mass spectrometry)	イオン	2次イオン	H - U	単原子層 ~ 数十 nm	元素組成 分子構造
SEM EDX, EPMA (Scanning electron microscope - energy-dispersive X-ray spectroscopy, Electron probe micro analyser)	電子	2次電子、 背面散乱電子 、蛍光X線	B - U	1 - 5 μm	元素組成
AES (Auger electron spectroscopy)	電子	Auger電子	Li – U	1 - 10 nm	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
		'			

⊕SHIMADZU		
分析条件		
使用装置		分析試料
KRATOS ULTR	A2	PTFE(PolyTetraFluoroEthylene)
分析条件		
X-Ray	75W / 300W (Monochromatic AlKα)	
Aperture size	300×700 µm	
Charge Neutralizer	ON (calibration :C-H = 285.0eV)	F F J n
XPSにより 表面分析の	りPTFEの最表面の分析を実施 の結果にどのような違いが見る	をしました。X線出力の違いにより、 受けられるかを検証しました。

⊕ SHIMADZU		
分析条件		
使用装置		分析試料
KRATOS ULTR	A2	還元処理されたPd含有触媒試料
分析条件		1000 Display Control
X-Ray	300W (Monochromatic AlKa)	500 Display
Pass Energy	Wide 160 eV, Narrow 20 eV	E o
Aperture size	300×700 μm	-500
Sweep time	60 s	-1000
Charge Neutralizer	ON (calibration :C-H = 285.0eV)	-1000 -500 0 500 1000 μm
還元処理された 大気非暴露でX を比較しました	:触媒試料をサンプルトランスァ PS装置に導入、測定しました。 :。	ポーターを用いてArガス雰囲気で封入し、 大気暴露したものも測定し、両者の違い

⊕ SHIMADZU		
分析条件		
使用装置		分析試料
KRATOS ULTR	A2	固体高分子電解質膜に電極触媒を接合した 電気化学デバイスであるMEA(Membrane Electrode Assembly:膜/電極接合体)を使用 以下の2サンプルの電極触媒層を分析
分析条件 X-Rav	300W (Monochromatic AlKα)	 √・新品未処理品 √・長期使用により性能低下した劣化品
Pass Energy	Wide 160 eV Narrow 40 eV	
Aperture size	300×700 µm	陽極 (+)電極
Calibration	C-H = 285.0eV	電極開媒層
Charge Neutralizer	ON (calibration :C-H = 285.0eV)	にNafon) 電極触媒層 陰極 (-) 電極
XPSにより、 新品未処理品	Nafion膜™を有するMEAの最 品と劣化品で表面の状態にどの	表面(電極触媒層)の分析を実施しました。 ような違いがあるか分析しました。

		原子濃度(atom	ic%)
F1s O1s C	1s S2p Pt	4f Cl 2p Si 2	2р
59.2 6.7	32.2 0.9	1.1 0.0	0.0
52.6 11.9	32.3 0.9	0.5 0.4	1.4
owスペクトルのピー	-ク面積から、元素の	の存在割合を算出し	しました。
を除くと、PtとO, F	の定量値に違いがあ	ぁることがわかりま	ミす。
	F 1s O 1s C 59.2 6.7 52.6 11.9 owスペクトルのピー を除くと、PtとO,F	F 1s O 1s C 1s S 2p Pt 59.2 6.7 32.2 0.9 52.6 11.9 32.3 0.9 owスペクトルのピーク面積から、元素の を除くと、PtとO, Fの定量値に違いがる	原子濃度(atom F 1s O 1s C 1s S 2p Pt 4f Cl 2p Si 2 59.2 6.7 32.2 0.9 1.1 0.0 52.6 11.9 32.3 0.9 0.5 0.4

