PCAによるMS Imagingデータ解析ソフトの開発

(株式会社島津製作所 基盤技術研究所)

〇森永浩子, 梶原茂樹, 小河潔

Development of the Software Using Principal Component Analysis for MS Imaging Data

OH. Morinaga, S. Kajihara, K. Ogawa (Technology Research Laboratory, Shimadzu Corporation)

Short Abstract

To confirm the effect of multivariate analysis on MS imaging, we have developed the software to apply principal component analysis (PCA). As a result of the phantom experiment, pareto scaling and varimax rotation are effective to obtain the valuable results.

はじめに

質量分析により得られた質量データは、スペクトルだけでなく空間分布 として表示することで、試料中の分子のイメージング画像を得ることがで きる。生体組織が対象であれば,バイオマーカー探索や創薬研究に役立 つと考えられる。

今回、化合物単位でのイメージングに向け、質量データに対して主成分 分析(PCA: Principal Component Analysis)を適用し、その効果を調べ るソフトを開発したので報告する。

方法

・サンプル《カラ一図形》

Adobe Photoshop™を用いて、インクジェットプリンタ(Calario™ PX-G5000@EPSON) 固有のCyan, Magenta2色のインクのみを用いた図 形をそれぞれ作成した後、シルバーラベル紙に重ね合わせて印刷した。 カラー図形のサンプルに対して約980μm四方の領域で50×50点の質 量分析を行い、2色のインクが別々の特徴的なピークを持つことを確認し

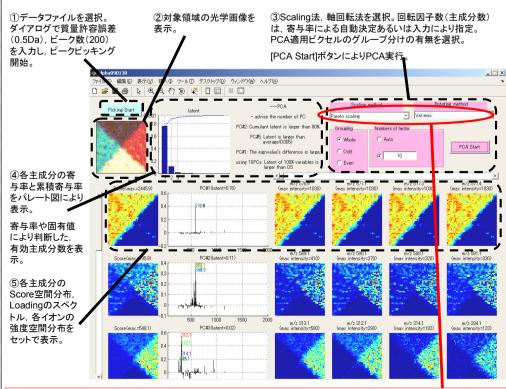
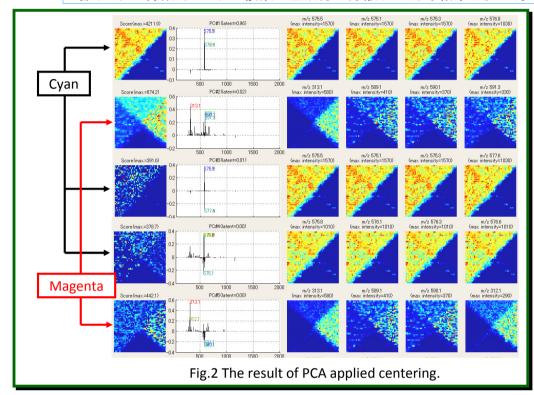



Fig.1 Color print and mass spectrum of cyan/magenta area.

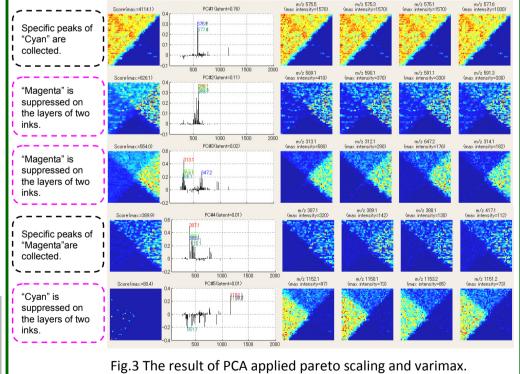
・開発ソフトウェアの外観

MSイメージングデータに対して適用するscaling法、軸回転法を選択し PCA結果を比較検討できるソフトウェアを開発した。


Scaling法は「無し」、「Centering」、「Pareto scaling」、「Auto scaling」、「Range scaling」、「Vast scaling」、「Level scaling」、 「Log transformation」,「Power transformation」の9種類より選択可能。

軸回転法は「無し」、「Orthomax」、「Varimax」、「Quartimax」、「Equamax」、「Parsimax」、「Promax」の7種類より選択可能。

結果


PCA(Centering)

各インクの特徴的ピークが複数の主成分に分散してしまう結果となった。

PCA(Pareto Scaling) + Varimax

上位5つの主成分それぞれには、同位体ピークや類似した空間分布を示すピーク が独立してまとまる結果が得られた。Score空間分布(Fig.3左部)と各イオン強度分 布(Fig.3右部)が一致するため、PCA結果が妥当であることがわかった。

奇/偶数ピクセルでグループ分けを行った結果は、全ピクセルの場合と 同一の結果となった。

Varimax: 各主成分のloading matrixの2乗の分散を最大にするよう、軸を直交回転させる。

<u>結論</u>

MSイメージングおいて、scalingや軸回転法(回転軸の個数)を選択し、 PCAによって最適な結果を検討できるソフトウェアを開発し、有効性を確認 した。本例では、pareto scalingとvarimax回転が有効であると分かった。 今後、同一成分を含む複数の化合物を、別々の主成分として抽出する手 法も検討する予定である。