

リチウムイオン電池の評価・解析技術 webinar

EPMA[™]によるLIB正極の 元素マッピングと状態分析

株式会社 島津製作所 分析計測事業部

() SHIMADZU

目次

- ・ EPMAの概要
- ・ 弊社 EPMAのご 紹介
- ・アプリケーション

EPMAのLIB分析例の概要 LIB正極 三元系NCM LIB正極 LMO(スピネル系)

EPMAとは?

Electron Probe Microanalyzer (電子線マイクロアナライザー)

<原理>

- 電子線を照射し発生する電子を捉えて拡大像を得る(SEM機能)
- ●複数搭載した波長分散型X線分光器(WDS)でX線を分析

<特徴>

- 真空中に導入した固体試料を分析
- 多彩な観察/分析機能を備えた表面分析装置
 SEM観察 / 定性分析 / 定量分析 /
 マッピング分析 / 線分析 / 状態分析
- SEM-EDSと比較して分析能力が高い
- 光学顕微鏡搭載
- 最大90mm□のマクロな情報が取得可能 (特別仕様で90×240mmも可能)

EPMAとSEM-EDSの構造の比較

WDSの構造

WDSとEDSの比較

	WDS (on EPMA)	EDS (on SEM)		
元素分析範囲	₄Be∼ ₉₂ U	₅B~ ₉₂ U		
検出方法	分光結晶によって波長分散 比例計数管によって検出す	半導体検出器(SDD)により エネルギーを検出する方式		
試料照射電流	多い(10 ⁻⁶ ~10 ⁻⁹ A)	少ない(10 ⁻⁸ ~10 ⁻¹⁰ A)		
エネルギー分解能	高い(10eV前後)		低い(130eV前後)	
分析検出限界	高い(50~100ppm)		低い(1500~2000ppm) 軽元素では数%以上	
定量分析精度	高い(1%以下、Be~U)		低い(2~3%、Na~U)	
定性分析時間	比較的速い(数分、分光結晶数による)		速い(1~3分)	
何がわかるか(分析能力)	元素の種類、量、分布、化学結合状態		元素の種類、量、分布	
X線取り出し角度	高い(40~52.5°)		低い(20~35°)	
焦点深度/範囲	やや浅い		深い	
試料傾斜	可能(ただし制限あり)		可能(自由度高い)	

() SHIMADZU

目次

- ・ EPMAの 概要
- ・ 弊社EPMAのご紹介

EPMAのLIB分析例の概要 LIB正極 三元系NCM LIB正極 LMO(スピネル系)

現行の島津EPMA™ラインナップ

高いX線取り出し角度

取り出し角度が高いほど、深く開いた 穴の底や、穴の中の分析の際にも吸収 の影響が小さくなります

反射電子像

Fe Ti ピットの穴の中の異物

高い取り出し角度により鉄(Fe)とチタニウム(Ti)の分布が 明瞭に確認できています。 🕀 SHIMADZU

高いX線取り出し角度(金属破断面)

電子銃による像の比較

大電流照射時の二次電子分解能 20nm(10nA・10kV) 50nm(100nA・10kV) 150nm(1µA・10kV)

EPMA-8050Gは 分析条件である 大電流照射時でも 電子プローブを絞る ことができます

() SHIMADZU

目次

- ・ EPMAの 概要
- ・ 弊社EPMAのご 紹介

EPMAによるLIB分析例の概要 LIB正極 三元系NCM LIB正極 LMO(スピネル系)

EPMAによるLIB分析例の概要

目 的:研究開発、製造技術、品質評価、不良解析

- 課 題:高容量化、長寿命化、低コスト化、安全性向上 歩留まり向上、品質の向上
- 対 象: 正極 / 負極(活物質 / バインダ / 導電助剤 / 電解液) セパレータ、電解液など

分析例:微小領域の形態観察 各成分の偏在や孤立などの分布確認 異物混入時の元素特定、不良品や性能劣化品の状態確認 / 原因調査 充放電サイクル試験などによる活物質の化学状態変化の評価

➡ EPMAによる 形態観察、定性分析、元素マッピング、状態分析 が有効

LIB正極 表面(NCM)

元素マッピング(×5,000)

凹凸のある表面ながらもX線取り出し角度が 高いため影の無い分布が得られます。

LIB正極 断面(NCM活物質)

元素マッピング(×5,000)

活物質の分布が明瞭にわかります。 相の違いがわかります。

LIB正極断面(NCM活物質/導電助剤/パインゲ)

元素マッピング (10kV, 45×45µm)

活物質/導電助剤/バインダの分布により偏在や孤立等の評価ができます。

LIB正極 断面をEPMAとSPMでデータ比較

印加電圧-2.7V印加

分析面の深さ方向の分布のイメージ図

LIB正極 (LMO)の試料作製

試料の種類:LMO(スピネル系マンガン酸リチウム)

作製試料:①初期状態(セル組立前の正極シート)

②**充電状態**(充電後の試料を解体し正極を取り出した正極シート)

(試料ご提供 国立研究開発法人 産業技術総合研究所様)

LIB正極 表面(スピネル系LMO 充電状態)

LIB正極 断面(スピネル系LMO 充電状態)

LIB正極 断面(スピネル系LMO 充電状態)

元素マッピング(×10,000)

高倍率の元素分布がわかります。 材料界面の薄膜層がわかります。 COMPO

LIB正極 表面(スピネル系LMO 状態分析)

正極表面のマッピング分析(左列:初期状態、右列:充電状態)

LIB正極 断面(スピネル系LMO 状態分析)

正極断面の0スペクトルとピークトップの拡大図

```
SHIMADZU
```

まとめ

- 1. EPMAによる形態観察や元素マッピングにより、LIB正極の<mark>各成分の</mark> 分布評価が可能である。
- 2. EPMAは応用機能として状態分析が可能。特に、LIB状態分析を得意 とするXPSやXspecia™(最新型蛍光X線分析装置)では困難な微小部 を狙った状態分析ができるのが特長。
- 3.島津EPMAはX線取り出し角度が高いことからLIB材料の表面などの 凹凸のある試料に対してもより精度の高い分析が可能である。
- 4. EPMAは、LIBの研究開発、製造技術、品質管理、不良解析などの 評価において有効な、オールラウンドな分析装置である。

最後に

島津製作所会員制サイト「Solutions Navigator」 続々とアプリケーションを紹介しています。この機会に是非ご覧ください。

会員制サイト「Solutions Navigator」→ <u>https://solutions.shimadzu.co.jp/</u> EPMA製品紹介 → <u>https://www.an.shimadzu.co.jp/surface/epma/epma/index.htm</u>

Excellence in Science	④ Global Web 盛 가イト内線素	aningpat	Excellence in Science	行計測機器 Ilytical and Measuring Instruments	団 島津製作所について 🌐 GLOBAL I
ニュース 製品情報 サービス&サポート 島津製作所につ	いて 投資家向け情報 研究開発 サステナビリティ	採用情報	ホーム	分析計測機器	会員制サービスについて お問い合わせ
DME> 会員制サイトのご願う 会員制サイト(会員制情報サービス)のご;	案内		会員制サイト Solutions Na	vigator	
Shim-Solutions Club BRARN	吉服サービス (風雨)		会員	ወ方へ	はじめての方へ
島津は、お客様個人個人により良いサポートを常にご提供していきたいと考えております。当社の商品を将 来または移転ご利用のお客様への会員を開始物サービスです。一人にひとつの会員DNoを発行します。 サービス内容は下記の通げです。なお、お客様の意思により本サービスの一部もしくは全部をいつでも変更・ 得止することができます。			- D2	グイン	> 新現会員登録
米お加らせ Shim-Solutions Clubの知道今後改建しました(2017年7月3日)			> 登録	梁変更	> 会員制サービスについて
新規登録 必ずご本人がご登録べたさ い、また、登録に時間がかか る場合がありますのであらか	容のご案内				>ご利用上の注意
しめご了承ください。 登録する 取りたかかす	コンス IIIでガジンで、新製品・技術情報・イベントなどをご します。 サンプリンン		Solutions Navigator内検索		Q
	イト Solutions Navigator データ的や装置消耗部品をキーワードで検索でき		新着情報	2020/08/05	ETIR のソフトウェア情報を更新
明の場合 パスワードがご不明の方は 再設定を行って下さい パスワードご変更 ・適会のご申請	全員の方でもデージ検索、結果表示までは可能で Solutions Navigator (行ぐ) Solutions Navigator (こついつ)		新着情報一覧	2020/07/29 🗲	-ク アプリケーションニュースを追加 UV (1), FTIR (2), GC (3), LC (3), LCMS (2), MALDI-T MS (1), TA (1), 材料試験(1), EPMA (1), レーザー顕微鏡 (2).
ご利用上の注意 不会員動サイトをご利用され る期にご一致たされ。 *Shim=Solution/規約 ・個人特級の保護になって	集に活用でださい。 Webinartップページへ行く>> Webinarのサンプルを見る>>			2020/07/16 7	グブリケーションニュースを追加 UV (3)、FTIR (4)、GC (2)、GCMS (3)、LC (2)、TOC (1 ItHelefatea (2)、FPMA (1)、POK (1)、XPS (1)、SMX (1)

EPMAおよびXspeciaは、株式会社島津製作所の商標です。