LC-ICP-MSを用いた魚介類中の水銀形態別分析および オートサンプラーによる検量線作成のための高正確性自動希釈法

〇岩田 奈津紀, 仲 康佑, 姜 雨晶, 小林 まなみ 島津製作所 分析計測事業部

1.はじめに

水銀は食物連鎖を通じて蓄積されやすく、魚介類等の一部の食品には高濃度の水銀が 含まれることがある。また、水銀の中でもメチル水銀は最も毒性が高い化学形態として知ら れている。そのため、食品における水銀の毒性評価には、総水銀としての分析だけでなく、 水銀の形態別分析が必要である。一方、定量における検量線用標準液の調製には手間が かかるだけでなく、毒物である水銀の取扱いにおいては、特に試料調製の自動化が望まれ

HPLCとICP-MSを組み合わせたLC-ICP-MS法は水銀を形態別に分離し、高感度分析が 可能である。本研究では、ICPMS-2050にNexera™ XS inertを接続したLC-ICP-MS(島 津製作所製)で、魚介類中の水銀の形態別分析を行い、メチル水銀と総水銀(無機水銀と メチル水銀の和)を定量した。また、HPLCのオートサンプラーによる自動希釈機能の真度 と併行精度を確認した。

2. 実験

2-1. 実サンプル(マグロ)の前処理

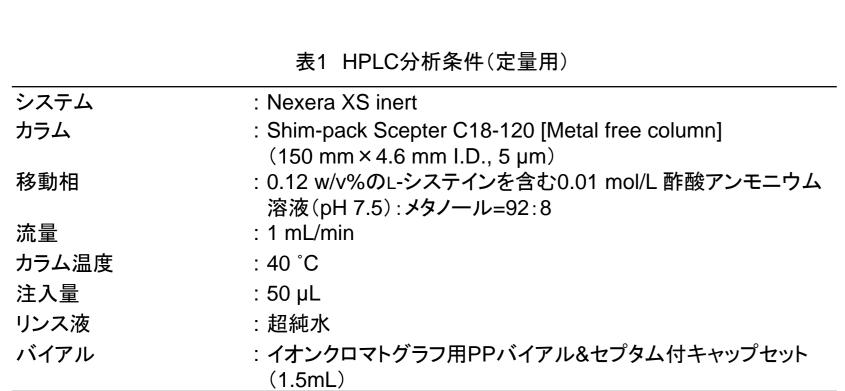
試料には市販のマグロを使用した。前処理法は米国食品医薬品局(FDA)の元素分析マ ニュアル(EAM)4.8を参考に行った¹⁾。約0.25 gのマグロの可食部をビーズ破砕機で30秒 間破砕した。細かく破砕した試料に1 w/v%のL-システイン塩酸塩一水和物溶液を25 mL加 えた。約60°Cで120分間温浴(60分ごとに攪拌)した後、遠心分離し、上清を0.45 µmの PTFEフィルタで濾過し、試料溶液とした。

2-2. 標準液の調製

水銀混合標準原液

市販の無機水銀1000 mg/L標準液を1 w/v% L-システイン塩酸塩一水和物溶液で1 mg/L になるように希釈した(無機水銀1 mg/L標準液)。市販の10 mg/Lメチル水銀、エチル水銀 混合標準液をメタノールで1 mg/Lになるように希釈した(アルキル水銀1 mg/L標準液)。 無機水銀1 mg/L標準液およびアルキル水銀1 mg/L標準液を各50 μg/Lになるように希釈 溶液で混合、希釈し調製した。

検量線用標準液

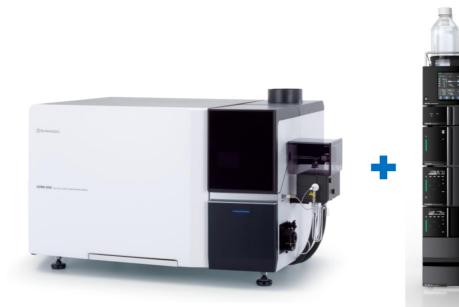

水銀混合標準原液を希釈溶液で希釈して調製した。標準液中の各形態の水銀濃度は、各 0.5~20 μg/Lである。

内標準溶液

市販のタリウム(TI)標準液を1 v/v%硝酸で100 µg/Lとなるように希釈し調製した。

2-3. 分析条件

分析条件は、LC-ICP-MSメソッドパッケージ 水銀 形態別分析(島津製作所製)に収録されている条件 を使用した。なお、移動相は、0.12 w/v%のL-システ インを含む0.01 mol/L 酢酸アンモニウム溶液(pH 7.5):メタノール=92:8、分析カラムは、Shim-pack ScepterTM C18-120(メタルフリー、150 mm×4.6 mm I.D., 5 µm、島津製作所製)である。



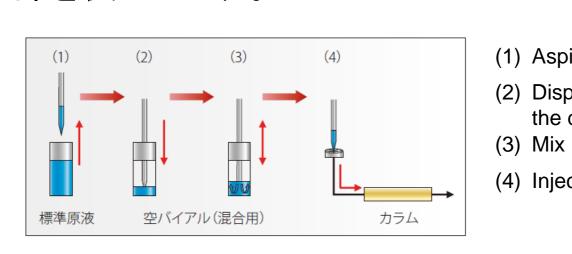

図1 LC-ICP-MSシステム

表2 ICP-MS分析条件

支置	:ICPMS-2050
ネブライザー	:ネブライザー DC04
ーチ	:ミニトーチ
チャンバー	:サイクロンチャンバー
ナンプリングコーン	:ニッケル製
スキマーコーン	:ニッケル製
高周波出力	:1.20 kW
ナンプリング深さ	:7.0 mm
プラズマガス流量	:9.0 L/min
甫助ガス流量	:1.10 L/min
キャリアガス流量	:0.85 L/min
希釈ガス流量	:0 L/min
ュルガス	:Не
zルガス流量	:6.0 mL/min
2ル電圧	:-25 V
ロネルギーフィルター	:7 V

2-4. 自動希釈機能による検量線用標準液の調製

自動希釈のためのオートサンプラーの動作の概要を図2に、 ラック模式図を図3に示す。水銀混合標準原液を入れたバイア ル(緑色)から希釈倍率に応じた量を吸引し、予めオートサンプ ラーにセットしておいた空のバイアル(混合用バイアル: 橙色) に希釈液と共に吐出した。混合用バイアルの中で撹拌を行 い、検量線用標準液を調製できる。この時、自動希釈により得 られる最終液量は100 µLである。自動希釈のための前処理プ ログラムの設定画面を図4に、前処理プログラムのコマンドの 一部を表3に示す。

(1) Aspirate the stock solution (2) Dispense the stock solution and the diluent together

(4) Inject

図4 オートサンプラーの前処理プログラムの設定画面

長3 前	処理プラグラム	ふのコマンド(特許出願中)	
ライン	コマンド	備考	
1	a0=1	原液のトレイ番号の指定	
2	a1=54	原液のバイアル番号の指 定	
3	a2=100	希釈倍率(1つ目の試料) の指定	
4	a3=100/a2	原液吸引量の計算(希釈 後容量:100 µL)	
5	n.drain	ニードルおよびニードル ループ内をリンス液で置 換後、ニードル先端の浸 漬洗浄	
6	disp 600.0,rs		
7	d.rinse		
8	vial.n a0,a1	原液バイアルからa3 μL だけ吸引	
9	n.strk ns		
10	aspir a3,ss		
11	air.a 0.1,ss	空気(0.1 µL)の吸引	
12	d.rinse	ニードル先端の浸漬洗浄	
13	vial.n 1,1	希釈調製するバイアル(トレイ番号1、バイアル番号1)に100.1 µL*を吐出し、撹拌※100.1 µL=希釈後容量+空気	
14	n.strk ns		
15	disp 100.1,rs		
16	mix 1,5,40,ss,35		
17	n.drain	ニードルおよびニードル ループ内をリンス液で置 換後、ニードル先端の浸 漬洗浄	
18	disp 100.0,rs		
19	d.rinse		
20	a2=50	希釈倍率(2つ目の試料) の指定	
21	a3=100/a2	原液吸引量の計算(希釈 後容量:100 µL)	
\sim			
49	inj.p	注入ポートへ移動	
50	v.inj	インジェクト状態にする	
51	wait 2.0	2分待機(送液ポンプによる高圧洗浄)	
	I		

スタート信号

前処理プログラムの終了

53

end

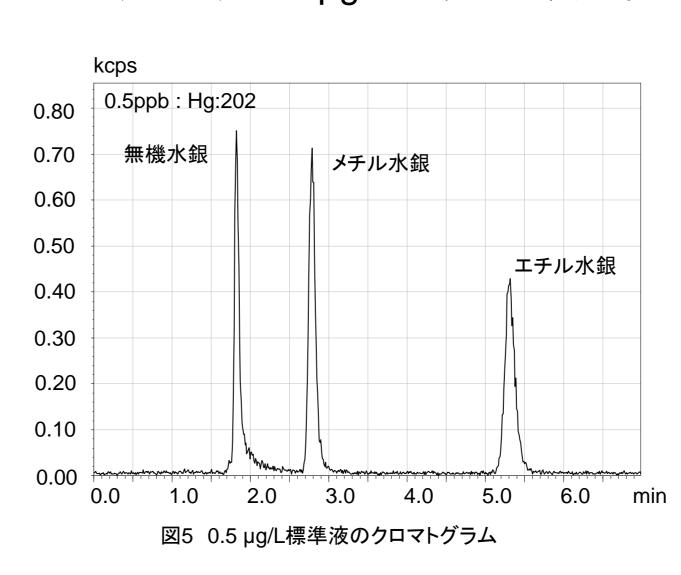

この機能を用い、各0.5~20 μg/Lの検量線用標準液を自動調 製した。自動希釈の評価に用い たHPLCの分析条件を表4に示 す。なお、ICP-MSの分析条件は 表2と同じである。

	表4 HPLC分析条件(自動希釈)
システム	: Nexera XS inert
カラム	: Shim-pack Scepter C18-120 [Metal free column] (150 mm × 4.6 mm I.D., 5 μm)
移動相	: 0.12 w/v%のL-システインを含む0.01 mol/L 酢酸アンモニウム 溶液(pH 7.5):メタノール=92:8
流量	: 1 mL/min
カラム温度	: 40 °C
注入量	: 50 μL
ニードルストローク	: 45 mm
希釈液(リンス液)	: 1 w/v%のL-システイン塩酸塩一水和物および8 v/v%メタノール
混合バイアル	: Shimadzu Vial, LC, 1mL, Polypropylene
原液および試料バイアル	: イオンクロマトグラフ用PPバイアル&セプタム付キャップセット (1.5mL)

3. 結果と考察

3-1.標準品を用いた水銀形態別分析

LC-ICP-MSを用いることで無機水銀、メチル水銀、エチル水銀をそれぞれ分離検出でき た。図5に検量線最下点の各0.5 µg/Lの無機水銀、メチル水銀、エチル水銀のクロマトグラ ムを示す。各成分の検量線の直線性について、相関係数はいずれも0.999以上であった (図6)。混合標準液(各0.2 µg/L)の10回繰り返し分析から得られた検出下限は、それぞれ 0.02、0.01、0.03 µg/Lであった(表5)。

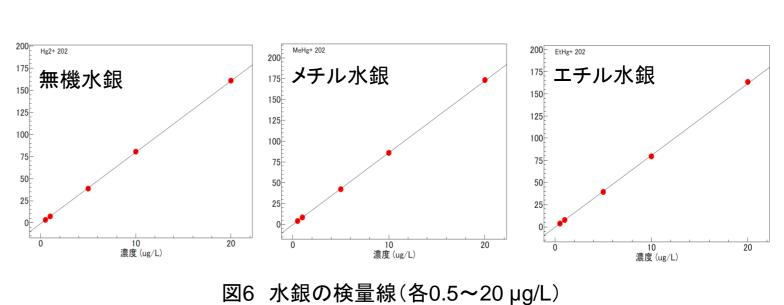


表5 相関係数および検出下限

化合物	相関係数	検出下限 μg/L
無機水銀	0.99994	0.02
メチル水銀	0.99996	0.01
エチル水銀	0.99988	0.03
	·	·

3-2.マグロ中の水銀形態別分析

FDA EAM4.8に従い、マグロに含まれる水銀形態別分析を行った。なお、このメソッドで は、総水銀の濃度は無機水銀とメチル水銀の和として算出される。図7にマグロ抽出液の クロマトグラムを、表6に分析結果および添加回収試験の結果を示す。メチル水銀と総水銀 それぞれで102%と105%の良好な回収率が得られた。今回、使用したマグロ試料中のメチ ル水銀濃度は、CODEX²⁾の基準値以下であった。

	表6 マグロ分析結果 	
水銀化学形態	メチル水銀	総水銀
J	测定溶液中分析結果 (μg/	L)
マグロ	6.16	6.48
添加濃度	10	20
添加回収率	102%	105%
	マグロ中分析結果 (mg/kg	1)
マグロ	0.614	0.646
CODEX基準値	1.0	

3-3. 自動希釈機能で作成した検量線の評価

オートサンプラーの自動希釈機能により検量線用標準液を自動調製し作成した検量線 (図8)を用いて、手動で調製した混合標準液(各1 µg/L)を分析し真度を確認したところ、 102~105%の結果が得られた。なお、検量線の直線性について、相関係数はいずれも 0.999以上であった。また、自動希釈機能を用いて6回繰り返し調製した混合標準液(各1 μg/L)の再現性は、1.6~4.0%であった(表7)。

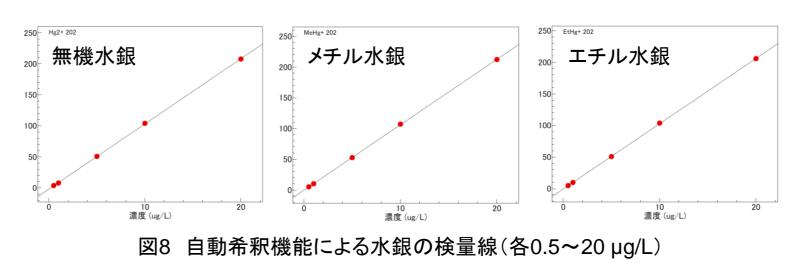


表7 自動希釈機能の真度・併行精度の評価 併行精度 真度% 化合物 相関係数 (1 µg/Lの分析結果) %RSD 無機水銀 4.0% 0.99976 102% メチル水銀 0.99997 105% 1.6%

105%

2.8%

0.99997

4. 結論

✓ マグロ中の水銀形態別分析を実施したところ、メチル水銀と総水銀で良好な添加回収率 が得られた。

エチル水銀

- ✔ 任意の希釈率の検量線用標準液を自動調製しそのまま分析に供することで、検量線を 簡便かつ正確に自動作成するメソッドを開発した。
- ✓ 手動での希釈調製の労力と時間および溶媒の消費量を削減できた。
- √ 毒物である水銀の安全な取扱いが可能となった。

以上より、LC-ICP-MSで魚介類中のメチル水銀と総水銀の濃度を正確に測定で きた。また、オートサンプラーの自動希釈機能で調製した検量線の妥当性を確 認できたため、本法を用いることで分析者の省力化だけでなく、安全の確保も期 待できる。

[参考文献]

1) U.S. Food and Drug Administration Elemental Analysis Manual 4.8 2) 食品及び飼料中の汚染物質及び毒素に関するコーデックスー般規格(CODEX STAN 193-1995)

NexeraおよびShim-pack Scepterは、株式会社島津製作所の商標です。