

Application News

LC-MS

ヒト血漿中 Favipiravir の測定

No. **C229**

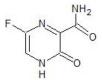
■はじめに

Favipiravir(販売名:アビガン®)は抗インフルエンザ薬として富士フィルム 富山化学株式会社が開発した RNA ポリメラーゼ阻害剤の 1 種です。本報では、選択性に優れた分析手法である LC/MS/MS(図 1)を用いて、血漿中に添加したFavipiravirの分析系を構築したので、研究成果をご紹介します。E. Imoto, D. Kawakami

図1 LCMS™-8060 の外観図

■分析条件および試料の前処理

測定対象化合物である Favipiravir(PN:C8720*1)、およびその安定同位体である[13 C, 15 N]-Favipiravir(PN:C8853*1)は、いずれも島津製作所グループ会社 Alsachim 社から購入し、[13 C, 15 N]-Favipiravir を内部標準物質として用いました。Favipiravir および[13 C, 15 N]-Favipiravir の構造式を図 2 に示します。市販されている EDTA 2K 処理したヒト血漿に Favipiravir を添加し、検量線の作成を行いました。測定は表 1 に示す LC および MS の分析条件、表 2 に示す MRM トランジションを用いました。分析カラムは Shim-pack Scepter[™] C18-120(50 mm×2.1 mm l.D., 1.9 μ m、P/N:227-31012-03)を使用しました。図 3 に MS クロマトグラムを示します。


Favipiravir を血漿中 1、2、5、10、20、50、100 μ g/mL に 調製した各サンプルを検量点として、それぞれ n=5 で検量線を作成致しました。アセトニトリルを用いて[13 C, 15 N]-Favipiravir(20 μ g/mL)の溶液を作製し、ISTD として用いました。

前処理法のフローを図 4 に示します。75 %IPA 20 μ L、血 漿 50 μ L、ISTD 10 μ L、アセトニトリル 200 μ L を添加し、十分に攪拌を行った後、遠心分離で得られた上清を LC バイアルに移して測定を行いました。

*1 島津ジーエルシーおよび Alsachim 製品番号

 $Favipiravir \\ Formula: C_5H_4FN_3O_2$

[¹³C,¹⁵N]-Favipiravir Formula: C₄¹³CH₄FN₂¹³NO₂

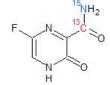


図 2 Favipiravir および[13C,15N]-Favipiravir の構造式

表 1 LC および MS の分析条件

<lc th="" 分析条件)<=""><th>></th><th colspan="4"><ms 分析条件=""></ms></th></lc>	>	<ms 分析条件=""></ms>			
UHPLC	Nexera [™] X2	LC/MS/MS システム	LCMS-8060		
分析カラム	Shim-pack Scepter C18-120 (50 mm×2.1 mm I.D., 1.9 µm)	インターフェイス	加熱 ESI		
移動相	A:0.05%ギ酸 - 水 B:0.05%ギ酸 -アセトニ トリル	MS 測定モード	MRM (+)		
グラジエント プログラム	5 % (0 – 0.30 min) → 30 % (0.35 min) → 90 % (1.50 – 2.50 min) →	ヒートブロック 温度	400 ℃		
(%B)	5 % (2.60 – 4.00 min)	DL 温度	250 ℃		
流速	0.4 mL/min	インターフェイス 温度	300 ℃		
カラムオーブン 温度	40 ℃	ネブライザーガス 流量	3 L/min		
注入量	1.0 μL	ドライイングガス 流量	10 L/min		
洗浄溶液 (外部洗浄のみ)	MeOH	ヒーティングガス 流量	10 L/min		

表 2 Favipiravir および[¹³C,¹⁵N]-Favipiravir の MRM トランジション

2(2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4								
化合物名	イオン	プリカーサーイオン (<i>m/z</i>)	プロダクトイオン (<i>m/z</i>)					
Favipiravir	定量イオン	157.70	85.10					
	定性イオン	157.70	113.20					
[¹³C,¹⁵N]- Favipiravir	定量イオン	159.70	85.10					
	定性イオン	159.70	113.20					

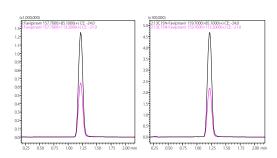


図 3 Favipiravir(左)、および [¹³C,¹⁵N]-Favipiravir(右)の MS クロマトグラム

図 4 血漿中 Favipiravir の前処理フロー

■検量線の作成

血漿に添加したサンプルを用いて検量線を作成した結果を表 3 に示します。設定した濃度範囲において R^2 =0.9998 と良好な直線性を得ました。真度(正確さ)および精度(再現性)を評価した結果、精度は%RSD 1.7 % -6.5 %でした。また、正確さは 96 % -103 %と 100 ± 15 %以内となりました。

表 3 血漿中 Favipiravir 分析の直線性、真度および精度

E STATE OF THE STA										
	Favipiravir experimental control of the second control of the seco									
ID	Spiked Conc. (µg/mL)	Average Conc. (µg/mL)	Precision %RSD	Accuracy %	Calibration Curve					
Blank					面侧比 Texticitavir					
Level 1	1	0.96	2.3	96	25.0 デー 5.099523 x - 0.0217562 ポー 0.9996239 R = 0.9999120 22.5 接出線の極額 デフォルト (画線)					
Level 2	2	2.00	6.5	100	200 					
Level 3	5	4.98	2.3	100	17:5 Mean RF: 5.206538-0400 3 SDR: 1:0911 Mg-001 15:0 %RSD: 2.094884					
Level 4	10	10.3	1.9	103	12.5					
Level 5	20	20.5	1.7	103	$R^2 = 0.9998$					
Level 6	50	49.8	1.9	100	25					
Level 7	100	99.5	1.9	100	00					

■QC サンプルを用いた分析系の妥当性評価

血漿中濃度を 3、50、90 μ g/mL に調製した試料を QC サンプルとし、併行精度 (表 4) および 3 日間の日差再現性 (表 5) を評価しました。併行精度の結果より、Favipiravir の精度 は%RSD 1.7% -4.5%でした。また、正確さは 98% -104% と 100 ± 15 %以内となりました。日差再現性の結果より、Favipiravir の精度は%RSD 0.1% -5.2%でした。また、正確 さは 89% -102%と 3 日間のそれぞれの QC サンプル測定において 100 ± 15 %以内を達成しました。

表 4 血漿中 Favipiravir 分析の併行精度

		Spiked	Intra-Assay (<i>n</i> =6)				
Compound	QC Sample	Conc. (µg/mL)	Average Conc. (µg/mL)	Precision %RSD	Accuracy %		
Favipiravir	Low	3	3.12	2.6	104		
	Medium	50	49.2	4.5	98		
	High	90	89.8	1.7	100		

表 5 血漿中 Favipiravir 分析の日差再現性

Compound	Sample Co	Spiked		Day 1st (<i>n</i> =3)		Day 2nd (<i>n</i> =3)			Day 3rd (<i>n</i> =3)		
		Conc. (µg/mL)	Average Conc. (μg/mL)	Precision %RSD	Accuracy %	Average Conc. (μg/mL)	Precision %RSD	Accuracy %	Average Conc. (μg/mL)	Precision %RSD	Accuracy %
Favipiravir	Low	3	3.05	0.1	102	2.89	4.6	96	2.67	5.2	89
	Medium	50	49.0	1.1	98	47.5	1.0	95	46.4	2.2	93
	High	90	90.2	0.4	100	88.3	4.2	98	87.6	2.4	97

分析系の安定性試験

今回構築した分析系の堅牢性および繰り返し再現性を評価するために、血漿中濃度 $10 \mu g/mL$ に調製した試料を用いて、100 回連続測定を実施しました。各注入時に得られた面積値を 1 回目の注入時に得られた面積値で正規化し、プロットした結果を図 5 に示します。100 回連続測定の結果、Favipiravir の%RSD は 2.9%、[13 C, 15 N]-Favipiravir の%RSD は 3.2%であり、高い注入再現性を実現する事ができました。以上の結果から、本分析系は高感度な分析を長時間維持し、高い堅牢性であることが示されました。

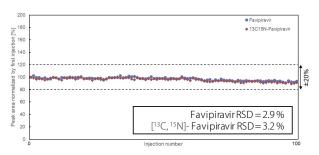


図 5 Favipiravir、および[13C,15N]-Favipiravir の 100 回連続測定結果 1 回目の注入時に得られた面積値で正規化し、各注入結果をプロット

■まとめ

Favipiravir を血漿に添加したサンプルを用いて LC/MS/MS の分析系を構築しました。検量線を作成したところ良好な直線性を得ることができ、また、分析系の堅牢性を評価するために 100 回の連続測定を実施した結果、高感度な分析を長時間維持した高い堅牢性であることが示されました。

本文書に記載されている製品は、医薬品医療機器法に基づく医療機器と して承認・認証を受けておりません。

治療診断目的およびその手続き上での使用はできません。

LCMS、Shim-pack Scepter、および Nexera は、株式会社 島津製作所の日本およびその他の国における商標です。

アビガンは、富士フイルム富山化学株式会社の登録商標です。

その他、本文中に記載されている会社名および製品名は、各社の商標および登録商標です。

本文中では「TM」、「®」を明記していない場合があります。

株式会社島津製作所

分析計測事業部 グローバルアプリケーション開発センタ-

初版発行:2020年8月

島津コールセンター

075) 813-1691